TEsin ECIMEX, a.s.

POD PLYNOJEMEM 1603/17, 18000 PRAHA 8, CZECH REPUBLIC phone: ++420-2-83063111 fax: ++420-2-6849213, 66311546
E-mail: ecimex@ecimex.cz http://www.ecimex.cz

DATA SHEET

A59EMZ43X..

Full Flat Square Color Picture Tube

The technical data of this book refer to the specification of products, but do not represent any guarantee of the characteristic.

A59EMZ43X..

Scope

1. General 2
1.1. Designation System 2
1.2. Short Description 2
1.3. Documentation System 2
2. Electrical Data 2
2.1. Maximum and Minimum Ratings 2
2.2. Additional Information and Recommendations 5
2.2.1. Power Supply Requirements 5
2.2.2. Design Recommendations 5
3. Electron - Optical Data 7
4. Optical Data 7
5. Mechanical Data 7
6. X - Radiation 9
7. Deflection Yoke 11
7.1. Conception of Deflection Yokes 11
7.2. Deflection Coil Data 11
7.3. Data of Deflection Yokes 11
7.4. Raster Distortion 12
7.5. Method of Measurement 12
8. Outline Drawings 13-27
9. Notes 28

1. General

1.1. Designation System

The designation for TV tubes shall consist of:

A59EMZ43X .

> two (three) digits, deflection yoke definition two (three) digits, the version of CPT within the family

1.2. Short Description

The picture tube A59EMZ43X.. type was designed for use in color TV sets and has the following features:

- Full Flat Square Design
- „Tint" glass screen with light transmission 49.5\%
- Semi-toroidal deflection yoke
- Deflection angle 110°
- Dynamic convergence free
- N/S Pincushion Correction free
- QPF - Quadru Potential Focus Electron Gun (I-LAT 29), Perma convergence system
- Quick start cathodes with reduced input $6.3 \mathrm{~V} / 300 \mathrm{~mA}$
- Pigmented phosphors, Cd-free
- Black Stripe Screen
- Soft Flash technology, protection against Flashover Damage
- Frit Mask technology to improve the mask stability
- Internal magnetic Shield
- Optimized for minimum Moiré effect on 525 \& 625 Line System
- Banded with Integrated Mounting Lugs
- Cathode ray tube intrinsically save according to appendix III Röntgenverordung, New issue dated $8^{\text {th }}$ January, 1987

1.3. Documentation System

Documentation system includes specifications of two levels:

- basic technical specification
- approval specification

2. Electrical Data

2.1. Maximum and Minimum Ratings

Maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable condition. TV set in which color picture tube is used, manufacturer should design so that, initially and through life time, no absolute maximum value is exceed with respect to supply voltage variation, component variation, control adjustment, load variation, signal variation, environmental conditions, and variations in characteristics of electronic tube under consideration.

Unless otherwise specified, values are for each gun and voltage positive with respect to Grid No. 1

NOTE - For maximum cathode life, it is recommended that the heater supply should be stabilized in the value range $U_{h}=(6.3 \pm 0.2) \mathrm{V}$ at anode current $\mathrm{I}_{\mathrm{a}}=0 \mu \mathrm{~A}$.

Graph 1

Condition: $\quad \mathrm{U}_{\mathrm{f}} \ldots . . .6 .3 \mathrm{~V}, \mathrm{U}_{\mathrm{a}} \ldots . .20 .0-29.9 \mathrm{kV}, \quad \mathrm{U}_{\mathrm{g} 3} \ldots . .$. adjusted at focus
Cutoff Design Characteristic

Graph 2
Condition: $\quad U_{f} \ldots . . .6 .3 \mathrm{~V}, \mathrm{U}_{\mathrm{a}} \ldots . .20 .0-29.9 \mathrm{kV}, \quad \mathrm{U}_{\mathrm{g} 3}$..... focused

2.2. Additional Information and Recommendation

2.2.1. Power Supply Requirements

a) Anode and Grid No. 3 (Focusing electrode) power source:

In order to minimize the possibility of damage caused by momentary internal arc, it is recommended that the Grid No. 3 power supply should be of the limited energy type.
Grid No. 3 circuit resistance
\max. $30.0 \mathrm{M} \Omega$
b) Low Voltage Circuits:

Grid No. 1 to Cathode Circuits (Each gun)
$\max .0 .75 \mathrm{M} \Omega$

2.2.2. Design Recommendations

a) Mounting:

Support for the tube should be provided by a mounting system which supports the tube in the area in front of the seal line together with a pull-up ring of similar support on the tube funnel. The mounting system should not place mechanical stress on or cause abrasion on the tube funnel.
The color receiver mounting system should incorporate sufficient cushioning so that under normal condition of shipment or handling an impact force of more than $294.4 \mathrm{~m} / \mathrm{s}^{2}$ (35G) parallel to the tube axis or more than $343.2 \mathrm{~m} / \mathrm{s}^{2}$ (30G) perpendicular to the tube axis is never applied to the picture tube.
Notes:

- The socket, including it is associated, physically attached hardware and circuitry, must weight no more than 0.5 kg . The forces applied on the base pins should be as small as possible.
- Socket for this base should not be rigidly mounted, should have flexible leads and be allowed to move freely.
- The picture tube lug hole tolerances allow using the fastening bolts within the 8.5 mm diameter provided that they are placed in stated distances.
- Deviation of one of the lug from the plane traversing through the rest three lugs shall be no more than 2 mm .
b) Grounding:

Contact to the external conductive coating should be made by multiple fingers to prevent possible damage to the tube from localized overheating due to poor contact. It is recommended that the tension band should be connected to the chassis. The contact with the external conductive coating shall be carried out to prevent possible damage of the picture tube by the local overheat effect.
This connection can be made directly or through a suitable RC network depending upon the particular chassis and cabinet design.
c) Protection from arcing:

It is recommended to insert spark gaps and series resistors between each electrode terminal and chassis ground to prevent the possible damage of the picture tube and other receiver components caused by internal arcing in the picture tube.
Spark gaps are recommended to be placed from Heater, Cathode, Grid No.1, Grid No. 2 and Grid No. 3 socket leads to ground and resistors are recommended to be connected in series with all other socket leads except Heater.
Recommended breakdown voltage value of spark gaps is 1 to 2 kV for Heater, Cathode, Grid No. 1 and Grid No.2, and 10 to 12 kV for Grid No. 3 and the value of series resistors is determined according to design of circuits.
Both spark gaps and series resistors should be mounted as close as possible to the common connection to the ground which ought to be the shortest.
d) If self CTV set chassis and loudspeaker should cause the displacement $10 \mu \mathrm{~m}$ and more of electron beam impact on the screen, this change makes a decrease of optimum picture tube setting-up adjusted by the producer.
Color TV set housing should be designed to transfer the loudspeaker vibration as least as possible.
e) The screen area may be cleaned by soft and dry cloth only which does not leave fibers.
f) The recommended demagnetizing circuits

$\div 220 \mathrm{~V}$

demagnetizing coil

Recommended demagnetizing energy value is min. 1500 Ampere-turns peak to peak. The current value over five cycles should not exceed 2 Ampere-turns value peak to peak.
g) Sagittal height:

The distance „Z" from any point on the screen to the center can be calculated using the following formula:

$\mathbf{R}=\sqrt{\left(\mathbf{X}^{2}+\mathrm{Y}^{2}\right)}$

if $R \leq 152$ then $Z \cong 1607-\sqrt{1607^{2}-R^{2}}$ else $Z \cong 1417+0.845-\sqrt{1417^{2}-(R-17.9)^{2}}$
Warning:
To maintain the preset adjustement of the neck components, the picture tube assembly should never be handled by the neck, yoke or other components.

3. Electron - Optical Data

	Parameter	Value
1	Focus method	Electrostatistic
2	Deflection method	Magnetic
3	Deflection angles	
	Diagonal	110°
	Vertical	97°
	Horizontal	77°
4	Magnetic Shield	Internal

4. Optical Data

	Parameter	Value
1	Useful screen dimension	
	Diagonal axis	590 min
	Vertical axis	363.3 min
	Horizontal axis	478 min
2	Light transmission of glass at center of screen	49.5\%
3	Screen	Vertical phosphor stripes with „Black stripe"
4	Phosphors (Cd-free)	$\mathrm{P}(22)$
	- Red (Rare Earth)	$\mathrm{X}=0.645, \mathrm{Y}=0.345$
	- Green (Sulfide)	$\mathrm{X}=0.310, \mathrm{Y}=0.610$
	- Blue (Sulfide)	$\mathrm{X}=0.149, \mathrm{Y}=0.056$
5	Approximate spacing between the same color phosphor stripes	in center 0.8 mm in corners 1.0 mm
6	White Color CIE Coordinates: $6500 \mathrm{~K} \pm 7$ MPCD	$\begin{aligned} & \mathrm{x}=0.313 \\ & \mathrm{y}=0.329 \end{aligned}$
	Percentage of Total Anode Current: Red - Green Red-Blue	$\begin{aligned} & 39 \% \\ & 36 \% \\ & 25 \% \end{aligned}$
	Cathode Current Ratio: Red - Green Red - Blue Blue - Green	$\begin{aligned} & \sim 1.1 \\ & \sim 1.8 \\ & \sim 0.6 \end{aligned}$
7	Luminance at center of the screen	(See Graph No.3)

5. Mechanical Data

	Parameter	Value
1	Neck diameter	$29.1+1.5 /-0.7 \mathrm{~mm}$
2	Base	JEDEC B10 -277
3	Anode Contact	JEDEC J1 -21
4	Mass	aprox. 20 kg
5	Mountain position	Anode contact on top

Graph 3

Condition: $\mathrm{U}_{\mathrm{f}} \ldots . .6 .3 \mathrm{~V}, \mathrm{U}_{\mathrm{g} 3} \ldots .$. adjusted at focus, Color White $6500 \mathrm{~K} \pm 7 \mathrm{MPCD}$ Raster Size 100\%
Measured at Circle Area of Diameter 90 mm at Screen Center
Typical Light Characteristic

6. X - Radiation

The X-radiation emitted from the color picture tube will not exceed $0.5 \mathrm{mR} / \mathrm{h}$ for the anode voltage and current combinations given by the iso-exposure-rate limit characteristic as shown in Graph No. 4

Graph 4 (Evaluated at the distance 5 cm in front the tube)

The maximum X-radiation as a function of anode voltage at $300 \mu \mathrm{~A}$ anode current is shown by the curve in Graph No.5. Radiation at the constant anode voltage varies linearly with anode current.

Graph 5 (Evaluated at the distance 5 cm in front the tube)

From these curves, maximum anode voltage at which the X-radiation emitted will not exceed $0.5 \mathrm{mR} / \mathrm{h}$ and an anode current $300 \mu \mathrm{~A}$.
For entire tube \qquad *38.5 kV

Maximum voltage difference between anode and focus electrode at which the X-radiation emitted will not exceed $0.5 \mathrm{mR} / \mathrm{h}$ \qquad **30.0 kV

WARNING:

- * This rating applies only if the anode connector used by the TV set provides the necessary attenuation to reduce the X -radiation from the anode contact.
- ** If the voltage values above can exceeded in TV set, additional attenuation of the X-radiation through the neck may be required.

NOTE:

Picture tube satisfies the requirements of German instruction ${ }^{*}$) in terms of radiated X-radiation also under limit of the operation mode. (Maximum dosage rate $-1 \mu \mathrm{~Sv} / \mathrm{h}$).
*) Federal Republic's digest of laws 1/1987 Z 5702A No.3, amendment III to paragraph 8, sub-clause 6.2, Federal Republic Germany.

7. Deflection Yoke

Following deflection yokes were designed for color ficture A59EMZ43X.., any other special version can be prepared.

7.1. Conception of Deflection Yokes

Special self convergence with semitoroidal deflection yoke is used for this color picture tube. (Saddle coil for horizontal part, toroidal coil for vertical part).

7.2. Deflection Coil Data

Parameter		Unit	Min.	Max.
1	Peak pulse voltage between Horizontal and Vertical coil			
	Long-Term average	V		1300
	Peak pulse voltage across Horizontal coils at 15625 Hz	V		1300
2	Peak pulse voltage across Vertical coils at 50 Hz	V	200	
3	Vertical Raster shift $\quad *)$	mm	5	
	Horizontal Raster shift	$*)$	mm	

NOTE *)
Measured between geometric center of the screen and the spot of the beam which is falling during detached deflection yoke and set convergence magnets.

7.3. Data of deflection Yokes

Item	Unit	Tol.	Version						
			X01	X02	X03	X04	X05	X06	X
Horizontal part									
L_{H}	mH	8\%	1.85	1.50	1.50	1.85	1.50	1.85	1.50
R_{H}	Ω	8\%	1.89	1.50	1.50	1.89	1.50	1.89	1.50
IP-P	A		4.17	4.63	4.63	4.17	4.63	4.17	4.63
Vertical part									
L_{V}	mH	8\%	18.00	24.60	11.00	11.00	18.00	14.80	14.80
R_{V}	Ω	8\%	5.70	9.60	5.40	5.40	5.707	6.00	6.00
$\mathrm{I}_{\mathrm{P}-\mathrm{P}}$	A		1.69	1.43	1.98	1.98	1.69	1.86	1.86

7.4. Raster Distortion

- Pincushion distortion

North - South
East - West
$2(\mathrm{a} 1+\mathrm{b} 1) /(\mathrm{AC}+\mathrm{BD}) * 100=\max .2 .0 \%$
$2(\mathrm{c} 1+\mathrm{d} 1) /(\mathrm{AB}+\mathrm{CD}) * 100=\max .5 .0 \%$
(See Fig.A)
(See Fig.A)

- Trapezoid distortion

Horizontal
$(\mathrm{AC}-\mathrm{BD}) /(\mathrm{AC}+\mathrm{BD}) * 100=\max .2 .5 \%$
(See Fig.A)
Vertical
$(\mathrm{AB}-\mathrm{CD}) /(\mathrm{AB}+\mathrm{CD}) * 100=\max .2 .5 \%$
(See Fig.A)

- Parallelogram distortion a or b
- Raster rotation \mathbf{r}
max. 6.0 mm
(See Fig.B)
max. 4.0 mm
(See Fig.B)
Fig. A

Fig. B

7.5. Method of Measurement

- inductivity at signal $1 \mathrm{~V} / 1 \mathrm{kHz}$
- resistance at $20^{\circ} \mathrm{C}$
- peak-peak deflection current value is measured at typical operating conditions at $\mathrm{Ua}=25 \mathrm{kV}$ and raster size 100%

8. Outline Drawings

Fig. 1a Front View of the CRT 14
Fig. 1b Front View of the CRT 15
Fig. 2 Top View of the CRT 16
Fig. 3 Side View of the CRT 17
Fig. 4 Diagonal View of the CRT 18
Fig. $5 \quad$ Mounting Lug Detail 19
Fig. $6 \quad$ Clearance Region for the Neck Components 20
Fig. 7a CRT Panel Contour Defined by Radii 21
Fig. 7b CRT Panel Contour Defined by Radii 22
Fig. $8 \quad$ CRT Funnel Contour Table 23
Fig. 9a CRT Base Mechanical Outline 24
Fig. 9b CRT Base Mechanical Outline 25
Fig. $10 \quad$ CRT Base Connection Table 26
Fig. 11 Yoke Terminal 27

Figure 1a - FRONT VIEW OF CATODE RAY TUBE

Designation	Description	Dimension type	
Dimension of the CRT including mounting system			
W1	Width	max	545
H1	Height	max	430
W3	Width including band	max	533
H3	Height including band but excluding junction	max	418
H4	Height of tube including band junction	max	421
Dimension of the centres of the CRT mounting holes			
W2	Width	nom	524.0
H2	Height	nom	406.5
Dimension of the useful phosphor screen			
S1	Diagonal	min	590.0
S2	Horizontal	min	478.0
S3	Vertical	min	363.3
Location of the "Z-point"			
X1	Horizontal co-ordinate	nom	236
Y1	Vertical co-ordinate	nom	177

Figure 1b - FRONT VIEW OF CATODE RAY TUBE

Designation	Description	Dimension type
Curvatures of the screen edge		
R1	Side radius	nom
R2	Corner radius	nom
R3	Bottom radius	nom
Clearance for band junction		
X2	Axis to nearest edge	min 33
X3	Axis to farthest edge	max 37
Y2	Thickness	max 3.0
Orientation of electron guns		
123	Electron gun sequence (left-to-right order)	RGB

Figure 2 - TOP VIEW OF THE CRT

Designation		Description	Dimension type
C	Neck outside diameter	Distance from the plane for locating the beam correction device to end of base	nom
J	Seal line to the nearest edge	$29.1+1.5 /-0.7$	
Contact area of external conductive coating	Seal line to the farthest edge	max	
G	Opening for anode contact	tol	122 ± 5
H	Width at the panel mold-match line including the band	215	
I	max		
Horizontal dimensions of the implosion protection band	max		
L	Base type designation	B10-277	
Connector type designation	Jnode type designation	97°	
Deflection angle		Horizontal deflection angle	
AV			

Figure 3 - SIDE VIEW OF THE CRT

Designation	Description	Dimension type
A	Overall length	min/max $399 / 412$
B	Reference line from end of base	nom
D	Centre face to reference line	nom
E	Centre of face to frit seal line	nom
F	Anode contact to end of base	nom
H	Hight at the panel mold match line including the band	max
X	Lenght of window	nom
Y	Wide of window	nom
text	Description of the implosion system	Push trought cabinet
AW	Vertical deflection angle	nom

Figure 4 - DIAGONAL VIEW OF THE CATHODE RAY TUBE

Designation	Description	Dimension type	
Sagittal height at minimum screen diagonal and lug location		nom	28.2
AH	Project distance from centre of face to Z-point along the tube axis	tol	32 ± 2
AI	Z-point to front of lug	Z-point to front edge of band	min
AJ	Diagonal axis		
Dimension at the mold match line including hardware forward of the mouting lug plane			
K	Diagonal deflection angle	nom	110°
AU			

Figure 5 - MOUNTING LUG DETAIL

Designation		Description	Dimension type
AP	Hole dimension	tol	12.0 ± 0.3
AQ	Heel radius	nom	26.8
AR	Lugs width	tol	35.0 ± 0.5
AS	Lugs lenght	nom	25.1
AT	Distance from lugs heel to centre of hole	nom	16.1
AU	Rivet hole diameter	nom	3.0
AV	Heel width	tol	10.5 ± 0.3
AX	Thickness	nom	2.6

Figure 6 - CLEARANCE REGION FOR NECK COMPONENTS

Designation	Description	Dimension type
C1	Diameter of the clearance for deflection yoke	\max
C2	Diameter of the clearance for purity convergence magnets	\max
C3	Lenght of the deflection yoke	\max
C4	Distance from the nearest to the farthest edge	\max
C5	Distance from the end of base to the farthest edge	\max

Figure 7a - CRT PANEL CONTOUR DEFINED BY RADII

Designation		Description
D	Usefull screen diagonal along the corner angle	min
E	Corner angle	nom
H	Usefull screen height	$36^{\circ} 52^{\prime} 12^{\prime \prime}$
W	Usefull screen width	min
R1	Top and bottom radii of screen outline	min
R2	Corner radii of screen outline	nom
R3	Side radii of screen outline	nom
Xs	Horizontal coordinate of the centre of the corner radii of the screen	nom
Ys	Vertical coordinate of the centre of the corner radii of the screen	nom
Xp	Horizontal coordinate of the centre of the corner radii of the panel	nom
Yp	Vertical coordinate of the centre of the corner radii of the panel	nom
R4	Outside corner radii at mold match line	nom
R5	Outside heel radius of the panel	nom

Figure 7b - CRT PANEL CONTOUR DEFINED BY RADII

Designation		Description	Dimension type
A	Dimension of the panel across the major axis at the mold match line	nom	519.0
B	Dimension of the panel across the minor axis at the mold match line	nom	406.5
C	Dimension of the largest diagonal of the panel	nom	629.8
CFT	Centre face thickness	nom	13.2
OAH	Overal height of the panel along the tube axis	nom	88
Inside contour definition using radii	nom		
R6	Radius of curvature of the screen surface	nom	
Outside contour definition using radii	1607		
R7	Radius of curvature of the panel at the center	nom	
R8	Radius of curvature of the panel at the edge	1417	
S	Shift of the center of radius R8 from tube axis	nom	

Figure 8 - CRT FUNNEL CONTOUR TABLE

Radial coordinates of the outside funnel contour (H) at the specified elevation from the reference line (K) and angle from the major axis.

Distance from reference line	Major axis 0°	10°	20°	30°	Diagonal axis $35^{\circ} 33^{\prime} 17^{\prime \prime}$	40°	50°	60°	70°	80°	Minor axis 90°
40.5	90.36	90.36	90.38	90.40	90.42	90.39	90.03	89.65	89.38	89.21	89.15
50.5	115.37	115.47	115.76	116.23	116.56	116.45	114.60	112.33	110.69	109.70	109.37
60.5	137,94	138.21	139.01	140.32	141.19	140.94	136.89	132.02	128.57	126.52	125.84
70.5	158.58	159.07	160.53	162.94	164.52	164.08	157.10	149.36	144.00	140.86	139.82
80.5	177.39	178.15	180.43	184.24	186.72	186.03	175.44	164.75	157.51	153.31	151.94
90.5	193.44	194.61	198.14	204.09	207.91	206.90	192.00	178.26	169.13	163.92	166.22
100.5	207.3	208.96	214.01	222.66	228.19	226.77	206.90	190.08	179.13	172.95	170.95
110.5	219.48	221.67	228.37	240.06	247.66	245.70	220.29	200.44	187.76	180.69	178.42
120.5	230.33	233.04	241.44	256.33	266.39	263.73	232.28	209.50	195.22	187.34	184.82
130.5	240.06	243.22	253.07	270.82	283.42	279.88	242.51	217.19	201.56	193.00	190.28
140.5	248.21	251.75	262.87	283.20	298.36	293.76	251.06	223.63	206.89	197.80	194.91
150.5	253.86	257.68	269.69	291.85	309.03	303.39	257.28	228.57	211.15	201.72	198.73
160.5	257.58	261.42	273.51	295.81	313.43	307.25	260.36	231.35	213.74	204.20	201.18

Figure 9a - CRT BASE MECHANICAL OUTLINE

Base Jedec No. B10-277

Designation	Description	Dimension type
A	CRT Neck diameter	max 30.61
B	Pin support fillet diameter	$\begin{array}{ll}\max & 3.15\end{array}$
C	Base height	nom 3.7
D	Keyway height	$\max 14.8$
E	Silo height	tol 13 ± 0.3
F	Pin support fillet height	max 1.7
G	Contact length	min 5.7
H	Exposed pin length	max 8.6
1	Pin support fillet top diameter	$\max 2.4$
J	Keyway diameter	$\min / \max \quad 10.8 / 11.35$
K	Pin circle diameter	nom 15.24
L	Wafer diameter	max 25.4
M	Silo wall thickness	tol 1.3 ± 0.2
R1	Silo corner inside radius	nom 1.0
R2	Silo corner outside radius	1.0
R3	Silo sidewall radius	tol 1.2 ± 0.1
a	Pin spacing half angle	nom $126 / 7^{\circ}$
b	Silo extent half angle	nom $255 / 7^{\circ}$
	Base orientation (pin 1 to major axis of the CRT in degres)	tol $38.6 \pm 5^{\circ}$

Figure 9b - CRT BASE MECHANICAL OUTLINE

Designation	Description	Dimension type
N	Pin diameter	to.
O	Pin taper length	1.016 ± 0.076
P	Pin end diameter	$\mathrm{min} / \mathrm{max}$
Q	Silo wall thickness at base	$0.4 / 0.9$
R 4	Silo fillet radius	max
S	Silo wall thickness	0.6

Figure 10 - CRT BASE CONNECTION TABLE

Designation	Description	Note
Pin 1	Grid number 3	
Pin 4	IC	Do not use
Pin 5	G number 1	
Pin 6	Cathode of Green Beam	
Pin 7	Grid number 2	
Pin 8	Cathode of Red Beam	
Pin 9	Heather	
Pin 10	Heather	Do not use
Pin 11	Cathode of Blue Beam	IC
Pin 12		

Figure 11 - YOKE TERMINAL

Horizontal Coil

Terminal

Designation	Description	Note
Pin 1	Horizontal coil - Beginninig (Heigh)	
Pin 2	IC	Do not use
Pin 3	IC	Do not use
Pin 4	Horizontal coil - End (Low)	
Pin 5	Vertical coil - End (Low)	
Pin 6	IC	Do not use
Pin 7	Vertical coil - Beginning (High)	

Notes

